Abstract

The asymmetric total synthesis of (−)-virosaine A was achieved in 9% overall yield from commercially/readily available starting materials. Inspired by an intriguing biosynthetic proposal, a novel cascade reaction sequence was developed to efficiently construct the caged polycyclic core of virosaine A. The pivotal cascade precursor was readily available in enantiopure form via a robust route that featured an enantioselective one-pot Diels-Alder cycloaddition/organolithium addition. Several contemporary methods of CH functionalization were applied to the cascade product and yielded a diverse set of novel complex polycycles. Ultimately, a combination of NMR and computational analyses laid the groundwork for a successful directed lithiation strategy to selectively functionalize the caged core and complete the total synthesis of virosaine A.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call