Abstract
Graphene exhibits remarkable properties and holds substantial promise for diverse applications. Its unique combination of thermal, chemical, physical, and biological properties makes it an appealing material for a wide range of uses. But, the lack of an economical and environmentally friendly approach to synthesize good-quality graphene represents an immense challenge for the scientific community. What makes this research unique is the utilization of the defensive gland extract from the beetle species Luprops tristis (Order: Coleoptera, Family: Tenebrionidae) to synthesize a few layers of graphene (FLG). This innovative incorporation of natural resources and exploration of biologically inspired methods provides an eco-friendly and cost-effective alternative to conventional graphene production techniques. The exfoliated graphene displayed antimicrobial effects against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, with particularly potent bactericidal activity. Additionally, the cytotoxicity assay demonstrated the anti-cancer properties of biosynthesized graphene against Daltons Lymphoma Acetic (DLA) cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.