Abstract

AbstractEfficient multiple‐chromophore coupling in a crystalline metal–organic scaffold was achieved by mimicking a protein system possessing 100 % energy‐transfer (ET) efficiency between a green fluorescent protein variant and cytochrome b562. The two approaches developed for ET relied on the construction of coordination assemblies and host–guest coupling. Based on time‐resolved photoluminescence measurements in combination with calculations of the spectral overlap function and Förster radius, we demonstrated that both approaches resulted in a very high ET efficiency. In particular, the observed ligand‐to‐ligand ET efficiency value was the highest reported so far for two distinct ligands in a metal–organic framework. These studies provide important insights for the rational design of crystalline hybrid scaffolds consisting of a large ensemble of chromophore molecules with the capability of directional ET.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.