Abstract
Integration of binocular information at the cellular level has long been studied in the mouse model to uncover the fundamental developmental mechanisms underlying mammalian vision. However, we lack an understanding of the corresponding ontogeny of visual behavior in mice that relies on binocular integration. To address this major outstanding question, we quantified the natural visually guided behavior of postnatal day 21 (P21) and adult mice using a live prey capture assay and a computerized-spontaneous perception of objects task (C-SPOT). We found a robust and specific binocular visual field processing deficit in P21 mice as compared to adults that corresponded to a selective increase in c-Fos expression in the anterior superior colliculus (SC) of the juveniles after C-SPOT. These data link a specific binocular perception deficit in developing mice to activity changes in the SC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.