Abstract

The odometry is an important part of intelligent mobile robots to achieve positioning and navigation functions. At present, the mainstream visual odometry locates only through the visual information obtained by camera sensors. Therefore, in the case of insufficient light, texture missing and camera jitter, the visual odometry is difficult to locate accurately. To solve the problem, we propose a binocular MSCKF-based visual inertial odometry system using Lucas-Kanade (LK) optical flow. Firstly, the Inertial Measurement Unit (IMU) is introduced to overcome the above problems. Moreover, LK optical flow algorithm is utilized to process the visual information obtained by the binocular camera, and MSCKF algorithm is employed to realize the fusion of visual information and inertial information, which improves the accuracy and efficiency of the visual inertial odometry system positioning. Finally, the proposed method is simulated on the European Robotics Challenge (EuRoc) dataset by Robot Operating System (ROS), and compared with two other advanced visual inertial odometry systems, ROVIO and MSCKF-mono. A large number of simulations verify that the proposed method can achieve accurate pose estimation, which is superior to the two existing advanced visual inertial odometry systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.