Abstract
The amount of information available on the World Wide Web has been increasing dramatically in recent years. To enhance speedy searching and retrieving Web documents of interest, researchers and practitioners have partially relied on various information retrieval techniques. We propose a probabilistic model to classify Web documents into relevant documents and irrelevant documents with respect to a particular application ontology, which is a conceptual-model snippet of standard ontologies. Our probabilistic model is based on multivariate statistical analysis and is different from the conventional probabilistic information retrieval models. The experiments we have conducted on a set of representative Web documents indicate that the proposed probabilistic model is promising in binary-categorization of multiple-record Web documents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.