Abstract
Nodes are replicated in fault-tolerant networks not only to increase the aggregate decision reliability but also to survive the failure of a subset of those nodes. A simple majority rule is the most common aggregate decision rule. One may believe that a simple majority rule may not be optimal when node replication is performed in organization following a hierarchical structure like a corporation or a military command. This research shows that if the node’s observations are better than random, then a simple majority rule is better than a hierarchical decision. Moreover, even though there are a few compromised nodes that falsify their vote, a simple majority rule will still be superior. However, a hierarchical decision process is more scalable and the vote can be aggregated faster. This paper also proposed a technique based on the law of diminishing marginal utility to calculate the optimum number of nodes in a decision process.Keywordsbinary votingfault-tolerant Networkhierarchical decision processnetwork securityreliabilitysurvivability
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.