Abstract

Acquired long QT syndrome causes severe cardiac side effects and represents a major problem in clinical studies of drug candidates. One of the reasons for development of arrhythmias related to long QT is inhibition of the human ether-a-go-go-related-gene (hERG) potassium channel. Therefore, early prediction of hERG K + channel affinity of drug candidates is becoming increasingly important in the drug discovery process. Binary QSAR models with threshold values at IC 50 = 1 and of 10 μM, respectively, were generated using two different sets of descriptors. One set comprising 32 P_VSA descriptors and the other one utilizing a set of descriptors identified out of a large set via a feature selection algorithm. For the full dataset, the power for classification of hERG blockers was 82–88%, which meets prior classification models. Considering the fact that 2D descriptors are fast and easy to calculate, these binary QSAR models are versatile tools for use in virtual screening protocols.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.