Abstract

Alpha-beta titanium alloys excel for aeroengine applications but are typically limited to ~550°C. An alternative strategy is reinforcement with the ordered-beta TiFe intermetallic, toward ‘β-Ti superalloys’, however, there has been minimal study of TiFe precipitation in the binary system.Here, a Ti-20Fe (at.%) alloy was homogenised at 1050°C in the β-Ti phase field and aged at 600°C where the Fe supersaturation promoted TiFe precipitation. Curiously, as the TiFe volume fraction increased, the alloy hardness decreased, due to an interplay of mechanisms: (1) Fe solid solution strengthening, which reduces as the β-Ti Fe content falls to 16.2% on ageing; (2) ω precipitation strengthening, as ω-like incommensurate modulated domains were identified by transmission electron microscopy in the homogenised β-Ti parent phase and are suggested to change in size and structure after ageing, resulting in reduced ω-strengthening; (3) softening as softer TiFe and α-Ti phases precipitate from the harder ω‑strengthened β-Ti parent phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.