Abstract

The most prevalent sleep-disordered breathing condition is Obstructive Sleep Apnea (OSA), which has been linked to various health consequences, including cardiovascular disease (CVD) and even sudden death. Therefore, early detection of OSA can effectively help patients prevent the diseases induced by it. However, many existing methods have low accuracy in detecting hypopnea events or even ignore them altogether. According to the guidelines provided by the American Academy of Sleep Medicine (AASM), two modal signals, namely nasal pressure airflow and pulse oxygen saturation (SpO2), offer significant advantages in detecting OSA, particularly hypopnea events. Inspired by this notion, we propose a bimodal feature fusion CNN model that primarily comprises of a dual-branch CNN module and a feature fusion module for the classification of 10-second-long segments of nasal pressure airflow and SpO2. Additionally, an Efficient Channel Attention mechanism (ECA) is incorporated into the second module to adaptively weight feature map of each channel for improving classification accuracy. Furthermore, we design an OSA Severity Assessment Framework (OSAF) to aid physicians in effectively diagnosing OSA severity. The performance of both the bimodal feature fusion CNN model and OSAF is demonstrated to be excellent through per-segment and per-patient experimental results, based on the evaluation of our method using two real-world datasets consisting of polysomnography (PSG) recordings from 450 subjects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.