Abstract
In this study, we report the development of a novel electrochemical sensor capable of the simultaneous detection of catechol (CC) and hydroquinone (HQ) through differential pulse voltammetry. The sensor is constructed using carbon fiber (CF) that has been intricately modified with bimetallic PtAu nanoparticles. The fabrication process involves subjecting CF to ultrasound treatment in an acidic mixture, resulting in the formation of activated carbon fiber (ACF). This activation step not only enhances surface roughness but also facilitates subsequent modification, ensuring the stability of the material. Bimetallic PtAu nanoparticles are then uniformly deposited onto the ACF surface through co-deposition from a metal precursor solution. The modified ACF, adorned with bimetallic PtAu nanoparticles, exhibits excellent conductivity and efficiently catalyzes both CC and HQ in a 10 mM phosphate-buffered saline solution at pH 7.0, thereby enabling their simultaneous detection. Under optimized experimental conditions, this electrochemical sensor achieves impressive detection limits of 0.019 μM for CC and 0.28 μM for HQ within the same concentration range of 0.5-50 μM, respectively. The practicality of the sensor is further demonstrated through recovery experiments using real water samples. This electrochemical sensor, with its superior performance and versatility, shows great potential for applications in analytical chemistry and environmental monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Analytical methods : advancing methods and applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.