Abstract
Motivated by the recent crisis of the European electricity markets, we propose the concept of Segmented Pay-as-Clear (SPaC) market, introducing a new family of market clearing problems that achieve a degree of decoupling between groups of participants. This requires a relatively straightforward modification of the standard PaC model and retains its crucial features by providing both long- and short-term sound price signals. The approach is based on dynamically partitioning demand across the segmented markets, where the partitioning is endogenous, i.e., controlled by the model variables, and is chosen to minimise the total system cost. The thusly modified model leads to solving Bilevel Programming problems, or more generally Mathematical Programs with Complementarity Constraints; these have a higher computational complexity than those corresponding to the standard PaC, but in the same ballpark as the models routinely used in real-world Day Ahead Markets (DAMs) to represent “nonstandard” requirements, e.g., the unique buying price in the Italian DAM. Thus, SPaC models should still be solvable in a time compatible with market operation with appropriate algorithmic tools. Like all market models, SPaC is not immune to strategic bidding techniques, but some theoretical results indicate that, under the right conditions, the effect of these could be limited. An initial experimental analysis of the proposed models, carried out through Agent Based simulations, seems to indicate a good potential for significant system cost reductions and an effective decoupling of the two markets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.