Abstract

To obtain operation benefits of both distribution network (DN) and microgrids (MGs), a multi-objective bi-level optimal operation model for DN with grid-connected MGs is explained. Starting from forecast of load and generation in MGs, upper-level (DN level) model determines the optimal dispatch of DN to achieve its power loss reduction and voltage profile improvement. Lower-level (MG level) model accepts the dispatch requirements from upper-level and determines the optimal operation strategy of distributed generators in MGs. Their energy utilization is increased with the consideration of wind curtailment, solar curtailment and other factors such as environmental benefits. With the mutual influence and constraints between upper-level and lower-level model, MGs could accommodate the optimal dispatch of DN. To solve the bi-level model, a combination method based on self-adaptive genetic algorithm and non-linear programming is put forward. IEEE 33 DN with Europe typical MGs and a real system are presented to perform several simulations, and results show the over-all optimal operation schemes of both DN and MGs compared with traditional dispatch approach, thereby validating the efficiency of the proposed model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.