Abstract

In a growing retail electricity market, demand response (DR) is becoming an integral part of the system to enhance economic and operational performances. This is rendered as incentive-based DR (IBDR) in the proposed study. It presents a bi-level decision framework under the ambit of multiple demand response providers (DRPs) in the retail competition. It is formulated as a multi-leader-multi-follower game, where multiple DRPs, as the DR stakeholders, are strategically interacting to optimize load serving entity cost at the upper level, and individual DRP as the aggregated customers is optimizing its cost at the lower level. The strategic behavior of DRPs is modeled in a game-theoretic framework using a generalized Stackelberg game. Further, the existence and uniqueness of the game are validated using variational inequalities. It is presented as a nonlinear problem to consider AC network constraints. An equilibrium problem with equilibrium constraints is used as a mathematical program to model the multi-leader-multi-follower, bi-level problem, which is simultaneously solved for all DRPs. The diagonalization method is employed to solve the problem. The detailed numerical analyses are conducted on IEEE 33-bus test and Indian-108 bus distribution systems to demonstrate the applicability and scalability of the proposed model and the suggested method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.