ACS Applied Materials & Interfaces | VOL. 8

A Bilayered Structure Comprised of Functionalized Carbon Nanotubes for Desalination by Membrane Distillation

Publication Date Jul 21, 2016


The development of a novel carbon nanotube (CNT) immobilized membrane comprised of a double-layer structure is presented for water desalination by membrane distillation. The bilayered structure is comprised of CNTs functionalized with a hydrophobic octadecyl amine group on the feed side and carboxylated CNTs on the permeate side. The latter is more hydrophilic. The hydrophobic CNTs provide higher water vapor permeation, while the hydrophilic CNTs facilitate the condensation of water vapor. Together, these led to superior performance, and flux in a direct contact membrane distillation mode was found to be as high as 121 kg/m(2)h at 80 °C. The bilayered membrane represented an enhancement of 70% over the unmodified membrane and 37% over a membrane which had a monolayered structure where only the feed side was CNT-modified.


Membrane Distillation Feed Side Carbon Nanotube Unmodified Membrane Bilayered Structure Water Vapor Condensation Of Vapor Direct Mode Hydrophobic Group Direct Contact Membrane Distillation

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Sep 19, 2022 to Sep 25, 2022

R DiscoverySep 26, 2022
R DiscoveryArticles Included:  5

Disaster Prevention and Management ISSN: 0965-3562 Article publication date: 20 September 2022 This paper applies the theory of cascading, interconnec...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19


Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.