Abstract

Capparis spinosa L. (CSL) is used in traditional medicinal purposes for wound dressing because it contains natural phenolic and flavonoid active compounds. In the current study, a bilayer of biocompatible and mechanically stable nanofiber scaffolds with polycaprolactone (PCL)/zinc oxide and Capparis spinosa L. ethyl acetate extract (CSLE)/polylactic acid (PLA) layers was successfully prepared by an electrostatic spinning technique. Microstructural observations carried out by scanning electron microscopy (SEM) have shown that the nanofibers with a smooth surface are continuous and bead-free, and that the size distribution is uniform, with an average diameter of 314.15 nm. The results of careful observation further suggested that polymers in the nanofibers have excellent compatibility with drugs. The results of Fourier transform infrared (FTIR) spectroscopy suggested that CSLE and zinc oxide nanoparticles (ZnO) were successfully loaded in the nanofiber membranes. Water contact angle measurements revealed that the bilayer nanofiber membranes exhibited satisfactory wettability (outside layer, 130°; inner layer, 72.4°). Tensile testing showed that the bilayer PCL/ZnO-CSLE/PLA nanofibers remained unbroken until reaching 10.69 MPa, which is much higher than the tensile strengths of the individual layers or the individual components. Moreover, agar disk diffusion assessment confirmed that the bilayer nanofiber membranes obviously hindered bacterial growth. Cytotoxicity studies showed that the bilayer nanofiber membranes effectively accelerated cell proliferation. The investigated PCL/ZnO-CSLE/PLA bilayer nanofibers have potential for use as membranes for wound dressing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.