Abstract

We extend the Marcus-Schaeffer bijection between orientable rooted bipartite quadrangulations (equivalently: rooted maps) and orientable labeled one-face maps to the case of all surfaces, orientable or non-orientable. This general construction requires new ideas and is more delicate than the special orientable case, but carries the same information. It thus gives a uniform combinatorial interpretation of the counting exponent $\frac{5(h-1)}{2}$ for both orientable and non-orientable maps of Euler characteristic $2-2h$ and of the algebraicity of their generating functions. It also shows the universality of the renormalization factor $n$<sup>¼</sup> for the metric of maps, on all surfaces: the renormalized profile and radius in a uniform random pointed bipartite quadrangulation of size $n$ on any fixed surface converge in distribution. Finally, it also opens the way to the study of Brownian surfaces for any compact 2-dimensional manifold. Nous étendons la bijection de Marcus et Schaeffer entre quadrangulations biparties orientables (de manière équivalente: cartes enracinées) et cartes à une face étiquetées orientables à toutes les surfaces, orientables ou non. Cette construction générale requiert des idées nouvelles et est plus délicate que dans le cas particulier orientable, mais permet des utilisations similaires. Elle donne donc une interprétation combinatoire uniforme de l’exposant de comptage $\frac{5(h-1)}{2}$ pour les cartes orientables et non-orientables de caractéristique d’Euler $2-2h$, et de l’algébricité des fonctions génératrices. Elle montre l’universalité du facteur de normalisation $n$<sup>¼</sup> pour la métrique des cartes, sur toutes les surfaces: le profil et le rayon d’une quadrangulation enracinée pointée sur une surface fixée converge en distribution. Enfin, elle ouvre à la voie à l’étude des surfaces Browniennes pour toute 2-variété compacte.

Highlights

  • Maps (a.k.a. ribbon graphs, or embedded graphs) are combinatorial structures that describe the embedding of a graph in a surface

  • This paper is devoted to the extension of the bijective method of map enumeration to the case of all general surfaces, and to its first consequences in terms of combinatorial enumeration and probabilistic results

  • We are able to drop an assumption of the orientability in Marcus-Schaeffer construction [16, 8] and extend it to the case of all surfaces: for any surface S there is a bijection between rooted maps on S and labeled one-face maps on S

Read more

Summary

Introduction

Maps (a.k.a. ribbon graphs, or embedded graphs) are combinatorial structures that describe the embedding of a graph in a surface (see Section 2 for precise definitions). We are able to drop an assumption of the orientability in Marcus-Schaeffer construction [16, 8] and extend it to the case of all surfaces (orientable or non-orientable): for any surface S there is a bijection between rooted maps on S (more precisely, rooted bipartite quadrangulations) and labeled one-face maps on S. In the forthcoming paper [5], the following result is proved: for any surface S, random uniform bipartite quadrangulations with n faces on S converge, up to subsequence extraction and proper renormalization, to a random metric space SBrownian that is almost surely homeomorphic to S and has Hausdorff dimension 4 The proof of this result heavily relies on the bijection of the present paper.

Representation of a unicellular map
Maps and bipartite quadrangulations
Statement of the main result and overview of the construction
From quadrangulations to well-labeled unicellular maps
Enumeration
Findings
Distances in random quadrangulations
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.