Abstract

The total number of noncrossing partitions of type $\Psi$ is the $n$th Catalan number $\frac{1}{ n+1} \binom{2n}{n}$ when $\Psi =A_{n-1}$, and the binomial coefficient $\binom{2n}{n}$ when $\Psi =B_n$, and these numbers coincide with the correspondent number of nonnesting partitions. For type $A$, there are several bijective proofs of this equality; in particular, the intuitive map, which locally converts each crossing to a nesting, is one of them. In this paper we present a bijection between nonnesting and noncrossing partitions of types $A$ and $B$ that generalizes the type $A$ bijection that locally converts each crossing to a nesting. Le nombre total des partitions non-croisées du type $\Psi$ est le $n$-ème nombre de Catalan $\frac{1}{ n+1} \binom{2n}{n}$ si $\Psi =A_{n-1}$, et le coefficient binomial $\binom{2n}{n}$ si $\Psi =B_n$, et ces nombres son coïncidents avec le nombre correspondant des partitions non-emboîtées. Pour le type $A$, il y a plusieurs preuves bijectives de cette égalité; en particulier, la intuitive fonction, qui convertit localement chaque croisée en une emboîtée, c'est un d'entre eux. Dans ce papier nous présentons une bijection entre partitions non-croisées et non-emboîtées des types $A$ et $B$ qui généralise la bijection du type $A$ qui localement convertit chaque croisée en une emboîtée.

Highlights

  • In this paper we present a bijection between nonnesting and noncrossing partitions of types A and B that generalizes the type A bijection that locally converts each crossing to a nesting

  • The poset of noncrossing partitions can be defined in a uniform way for any finite Coxeter group W

  • It is a self-dual, graded lattice which reduces to the classical lattice of noncrossing partitions of the set [n] = {1, 2, . . . , n} defined by Kreweras in [9] when W is the symmetric group Sn, and to its type B analogue defined

Read more

Summary

Introduction

The poset of noncrossing partitions can be defined in a uniform way for any finite Coxeter group W. Since all Coxeter elements in W are conjugate to each other, the interval [1, c] in Abs(W ) is independent, up to isomorphism, of the choice of c We denote this interval by NC(W) or by NC(Ψ), where Ψ is the Cartan-Killing type of W , and call it the poset of noncrossing partitions of W. Nonnesting partitions were defined by Postnikov (see [10, Remark 2]) in a uniform way for all irreducible root systems associated with Weyl groups. Christian Stump [11] described a bijection between nonnesting and noncrossing partitions for type B, and simultaneously with our work, Alex Fink and Benjamin Giraldo [5] presented a different bijection for each classical group. Stump’s bijection does not preserve neither the type nor the triples (op, cl, tr)

Noncrossing and nonnesting partitions of types A and B
Main result
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call