Abstract
• A big data driven framework of sustainable and smart additive manufacturing is proposed. • Key enabling technologies are designed to implement the framework. • Benefits of the framework were explained for additive manufacturing. • An application of AlSi10Mg products is presented by SLM system for validation of SSAM framework. From the last decade, additive manufacturing (AM) has been evolving speedily and has revealed the great potential for energy-saving and cleaner environmental production due to a reduction in material and resource consumption and other tooling requirements. In this modern era, with the advancements in manufacturing technologies, academia and industry have been given more interest in smart manufacturing for taking benefits for making their production more sustainable and effective. In the present study, the significant techniques of smart manufacturing, sustainable manufacturing, and additive manufacturing are combined to make a unified term of sustainable and smart additive manufacturing (SSAM). The paper aims to develop framework by combining big data analytics, additive manufacturing, and sustainable smart manufacturing technologies which is beneficial to the additive manufacturing enterprises. So, a framework of big data-driven sustainable and smart additive manufacturing (BD-SSAM) is proposed which helped AM industry leaders to make better decisions for the beginning of life (BOL) stage of product life cycle. Finally, an application scenario of the additive manufacturing industry was presented to demonstrate the proposed framework. The proposed framework is implemented on the BOL stage of product lifecycle due to limitation of available resources and for fabrication of AlSi10Mg alloy components by using selective laser melting (SLM) technique of AM. The results indicate that energy consumption and quality of the product are adequately controlled which is helpful for smart sustainable manufacturing, emission reduction, and cleaner production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.