Abstract
Abstract Water utilities collect vast amounts of data, but they are stored and utilised in silos. Machine learning (ML) techniques offer the potential to gain deeper insight from such data. We set out a Big Data framework that for the first time enables a structured approach to systematically progress through data storage, integration, analysis, and visualisation, with applications shown for drinking water quality. A novel process for the selection of the appropriate ML method, driven by the insight required and the available data, is presented. Case studies for a water utility supplying 5.5 million people validate the framework and provide examples of its use to derive actionable information from data to help ensure the delivery of safe drinking water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: AQUA — Water Infrastructure, Ecosystems and Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.