Abstract

The hybrid peptide BP178 (KKLFKKILKYLAGPAGIGKFLHSAKKDEL-OH), derived from BP100 (KKLFKKILKYL) and magainin (1–10), and engineered for plant expression, had a strong bactericidal activity but not fungicidal. Moreover, the preventive spray of tomato plants with BP178 controlled infections by the plant pathogenic bacteria Pseudomonas syringae pv. tomato and Xanthomonas campestris pv. vesicatoria, as well as the fungus Botrytis cinerea. The treatment of tomato plants with BP178 induced the expression of several genes according to microarray and RT-qPCR analysis. Upregulated genes coded for several pathogenesis-related proteins, including PR1, PR2, PR3, PR4, PR5, PR6, PR7, PR9, PR10, and PR14, as well as transcription factors like ethylene transcription factors, WRKY, NAC and MYB, involved in the salicylic acid, jasmonic acid, and ethylene-signaling pathways. BP178 induced a similar gene expression pattern to flg15 according to RT-qPCR analysis, whereas the parent peptide BP100 did not trigger such as a strong plant defense response. It was concluded that BP178 was a bifunctional peptide protecting the plant against pathogen infection through a dual mechanism of action consisting of antimicrobial activity against bacterial pathogens and plant defense elicitation on plant host.

Highlights

  • Chemical control with conventional pesticides is an important part of the management of bacterial and fungal diseases of plant crops, but their extensive use has a negative environmental impact and often results in the emergence of resistance within the pathogen population (McManus et al, 2002; Brent and Hollomon, 2007; Sundin et al, 2016)

  • We investigated the antimicrobial activity of peptide BP178 (Badosa et al, 2013; Montesinos et al, 2017) and its potential use as biostimulant to improve resistance to biotic and abiotic stresses in tomato, one of the major crops cultivated worldwide

  • The activity of BP178 was compared to the antibacterial peptide BP100 that does not have plant defense elicitation activity and to the plant-defense elicitor peptide flg15

Read more

Summary

Introduction

Chemical control with conventional pesticides is an important part of the management of bacterial and fungal diseases of plant crops, but their extensive use has a negative environmental impact and often results in the emergence of resistance within the pathogen population (McManus et al, 2002; Brent and Hollomon, 2007; Sundin et al, 2016). Plants have evolved several defense strategies to protect themselves from biotic and abiotic stresses (Montesano et al, 2003; Nejat and Mantri, 2017; Lamers et al, 2020) These responses include a set of induced mechanisms at the tissular level, like the rapid and localized cell death, termed hypersensitive response, and the production and accumulation of near 17 families of pathogenesis-related (PR) proteins (van Loon et al, 1994; Christensen et al, 2002; Jiang et al, 2015). The application of chemical or biological elicitors to plants (e.g., harpins, acibenzolar-S-methyl, and fosetyl-Al) has been reported to protect plants from biotic stresses (Bektas and Eulgem, 2015; Badosa et al, 2017)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call