Abstract

AbstractThe best use of photogenerated electrons and holes is crucial to boosting photocatalytic activity. Herein, a bifunctional dual‐cocatalyst‐modified photocatalyst is constructed based on CdS/MoO2/MoS2 hollow spheres for hydrogen evolution coupled with selective pyruvic acid (PA) production from lactic acid (LA) oxidation. MoS2 and MoO2 are simultaneously obtained from the conversion of CdMoO4 in one step. In a photocatalytic process, the MoS2 and MoO2 function as the reduction and oxidation centers on which photogenerated electrons and holes accumulate and are used for hydrogen evolution reaction (HER) and PA synthesis, respectively. By monitoring the intermediates, a two‐step single‐electron route for PA production is proposed, initiated by the cleavage of the α‐C(sp3)−H bond in the LA. The conversion of LA and the selectivity of PA can reach ca. 29 % and 95 % after a five‐hour reaction, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.