Abstract

The escalating global concern over CO2 emissions has spurred extensive research aimed at developing innovative solutions for capturing, storing, and utilizing CO2, crucial for establishing a closed carbon loop. Thermo-catalytic CO2 hydrogenation stands out as a promising approach, though challenged by CO2's high stability, hindering the production of heavy liquid hydrocarbons. This study explores the design and performance of a bifunctional cobalt-based catalyst, promoted by Ru and supported by multiple shells of carbon, mesoporous silica, and ceria for CO2 hydrogenation in the Modified Fischer-Tropsch Synthesis (MFTS) route. Through meticulous characterization and evaluation, the catalyst demonstrates suitable textural properties, reducibility, and dispersion of active sites, promoting CO2 conversion and selectivity towards heavier hydrocarbons, highlighting the significance of catalyst design and operating conditions. The catalyst exhibits notable stability across catalyst deactivation, attributed to its thermal conductivity provided by SiC matrices. SiC-supported catalysts play a pivotal role in enhancing the efficiency, selectivity, and stability of CO2 hydrogenation catalysts. Moreover, in this study, through meticulous evaluation of elementary reactions based on molecular dynamic (MD) computations, a detailed mechanism for MFTS is presented. Key to this mechanism is the H-assisted CO2 dissociation pathway, supported by computational analysis. The pathway involves sequential reactions starting from CO2 adsorption on catalyst sites, followed by successive transformations leading to the formation of hydrocarbon building blocks. Ultimately, a developed MFTS kinetic model based on the MD-evaluated mechanism, which accurately predicts product selectivity across various operational conditions, indicating its robustness and reliability, is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.