Abstract

Electrochemical double-layer capacitors, which are well known as ultracapacitors, have intensively been used in power conversion applications such as controlled electric drives, active filters, power conditioners, and uninterruptible power supplies. The ultracapacitor is employed as the energy storage device that can be fully charged/discharged within a few seconds. To achieve better flexibility and efficiency, the ultracapacitor is connected to the power conversion system via an interfacing dc-dc power converter. Various topologies are used as the dc-dc power converter: nonisolated two-level single-phase or multiphase interleaved converters and many varieties of isolated soft-switched dc-dc converters. A three-level nonisolated dc-dc converter as a candidate for ultracapacitor applications is proposed and analyzed in this paper. The topology is theoretically analyzed, and design guidelines are given. The modeling and control aspects are discussed. A 5.5-kW prototype was designed, and the proposed topology was experimentally verified on a general-purpose controlled electric drive. Experimental results are presented and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.