Abstract

Simultaneous localization and mapping (SLAM) is the technological basis of environmental sensing, and it has been widely applied to autonomous navigation. In combination with deep learning methods, dynamic SLAM algorithms have emerged to provide a certain stability and accuracy in dynamic scenes. However, the robustness and accuracy of existing dynamic SLAM algorithms are relatively low in dynamic scenes, and their performance is affected by potential dynamic objects and fast-moving dynamic objects. To solve the positioning interference caused by these dynamic objects, this study proposes a geometric constraint algorithm that utilizes a bidirectional scoring strategy for the estimation of a transformation matrix. First, a geometric constraint function is defined according to the Euclidean distance between corresponding feature points and the average distance of the corresponding edges. This function serves as the basis for determining abnormal scores for feature points. By utilizing these abnormal score values, the system can identify and eliminate highly dynamic feature points. Then, a transformation matrix estimation based on the filtered feature points is adopted to remove more outliers, and a function for evaluating the similarity of key points in two images is optimized during this process. Experiments were performed based on the TUM dynamic target dataset and Bonn RGB-D dynamic dataset, and the results showed that the added dynamic detection method effectively improved the performance compared to state of the art in highly dynamic scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.