Abstract

Recently, a zero-shot entity linking task is introduced to challenge the generalization ability of entity linking models. In this task, mentions must be linked to unseen entities and only the textual information is available. In order to make full use of the documents, previous work has proposed a BERT-based model which can only take fixed length of text as input. However, the key information for entity linking may exist in nearly everywhere of the documents thus the proposed model cannot capture them all. To leverage more textual information and enhance text understanding capability, we propose a bidirectional multi-paragraph reading model for the zero-shot entity linking task. Firstly, the model treats the mention context as a query and matches it with multiple paragraphs of the entity description documents. Then, the mention-aware entity representation obtained from the first step is used as a query to match multiple paragraphs in the document containing the mention through an entity-mention attention mechanism. In particular, a new pre-training strategy is employed to strengthen the representative ability. Experimental results show that our bidirectional model can capture long-range context dependencies and outperform the baseline model by 3-4% in terms of accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.