Abstract

Modern engineered systems generally work under complex operational conditions. However, most of the existing artificial intelligence (AI)-based prognostic methods still lack an effective model that can utilize operational conditions data for remaining useful life (RUL) prediction. This paper develops a novel prognostic method based on bidirectional long short-term memory (BLSTM) networks. The method can integrate multiple sensors data with operational conditions data for RUL prediction of engineered systems. The proposed architecture based on BLSTM networks includes three main parts: first, one BLSTM network is used to directly extract features hidden in the multiple raw sensors signals; second, another BLSTM network is employed to learn higher features from operational conditions signals and the learned features from the sensors signals; and, third, fully connected layers and a linear regression layer are stacked to generate the target output of the RUL prediction. Unlike other AI-based prognostic methods, the developed method can simultaneously model both sensors data and operational conditions data in a consolidated framework. The proposed approach is demonstrated through a case study on aircraft turbofan engines, and comparisons with other popular state-of-the-art methods are also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call