Abstract
We write σA the first hitting time of set A for the Hunt processes. Let B and BR be compact sets, where BR states far away from B. We assume that the Hunt process is irreducible and conservative and satisfies the Feller property. We consider a relation of the hitting probability of B from BR with the hitting probability of BR from B, without the spatial homogeneity. Our claim is that if the Hunt process satisfies the strong Feller property, then limx→∞Px(σB≤t)=0 implies that limR→∞Py(σBR≤t)=0, for y∈B. Additionally, if the Hunt process is m-symmetric, then both statements are equivalent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.