Abstract

A bidirectional associative memory is presented. Unlike many existing BAM algorithms, the presented BAM uses an optimal associative memory matrix in place of the standard Hebbian or quasi correlation matrix. The optimal associative memory matrix is determined by using only simple correlation learning, requiring no pseudoinverse calculation. Guaranteed recall of all training pairs is ensured by the present BAM. The designs of a linear BAM (LBAM) and a nonlinear BAM (NBAM) are given, and the stability and other performances of the BAMs are analyzed. The introduction of a nonlinear characteristic enhances considerably the ability of the BAM to suppress the noises occurring in the output pattern, and reduces largely the spurious memories, and therefore improves greatly the recall performance of the BAM. Due to the nonsymmetry of the connection matrix of the network, the capacities of the present BAMs are far higher than that of the existing BAMs. Excellent performances of the present BAMs are shown by simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.