Abstract
Rice is one of the most important food crops around the world. Remote sensing technology, as an effective and rapidly developing method, has been widely applied to precise rice management. To observe the current research status in the field of rice remote sensing (RRS), a bibliometric analysis was carried out based on 2680 papers of RRS published during 1980–2021, which were collected from the core collection of the Web of Science database. Quantitative analysis of the number of publications, top countries and institutions, popular keywords, etc. was conducted through the knowledge mapping software CiteSpace, and comprehensive discussions were carried out from the aspects of specific research objects, methods, spectral variables, and sensor platforms. The results revealed that an increasing number of countries and institutions have conducted research on RRS and a great number of articles have been published annually, among which, China, the United States of America, and Japan were the top three and the Chinese Academy of Sciences, Zhejiang University, and Nanjing Agricultural University were the first three research institutions with the largest publications. Abundant interest was paid to “reflectance”, followed by “vegetation index” and “yield” and the specific objects mainly focused on growth, yield, area, stress, and quality. From the perspective of spectral variables, reflectance, vegetation index, and back-scattering coefficient appeared the most frequently in the frontiers. In addition to satellite remote sensing data and empirical models, unmanned air vehicle (UAV) platforms and artificial intelligence models have gradually become hot topics. This study enriches the readers’ understanding and highlights the potential future research directions in RRS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.