Abstract
This paper contributes to the GMM literature by introducing the idea of self-instrumenting target variables instead of searching for instruments that are uncorrelated with the errors, in cases where the correlation between the target variables and the errors can be derived. The advantage of the proposed approach lies in the fact that, by construction, the instruments have maximum correlation with the target variables and the problem of weak instrument is thus avoided. The proposed approach can be applied to estimation of a variety of models such as spatial and dynamic panel data models. In this paper we focus on the latter and consider both univariate and multivariate panel data models with short time dimension. Simple Bias-corrected Methods of Moments (BMM) estimators are proposed and shown to be consistent and asymptotically normal, under very general conditions on the initialization of the processes, individual-specific effects, and error variances allowing for heteroscedasticity over time as well as cross-sectionally. Monte Carlo evidence document BMM.s good small sample performance across different experimental designs and sample sizes, including in the case of experiments where the system GMM estimators are inconsistent. We also find that the proposed estimator does not suffer size distortions and has satisfactory power performance as compared to other estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.