Abstract
BackgroundLongitudinal ordinal data are commonly analyzed using a marginal proportional odds model for relating ordinal outcomes to covariates in the biomedical and health sciences. The generalized estimating equation (GEE) consistently estimates the regression parameters of marginal models even if the working covariance structure is misspecified. For small-sample longitudinal binary data, recent studies have shown that the bias of regression parameters may result from the GEE and have addressed the issue by applying Firth’s adjustment for the likelihood score equation to the GEE as if generalized estimating functions were likelihood score functions. In this manuscript, for the proportional odds model for longitudinal ordinal data, the small-sample properties of the GEE were investigated, and a bias-reduced GEE (BR-GEE) was derived.MethodsBy applying the adjusted function originally derived for the likelihood score function of the proportional odds model to the GEE, we produced the BR-GEE. We investigated the small-sample properties of both GEE and BR-GEE through simulation and applied them to a clinical study dataset.ResultsIn simulation studies, the BR-GEE had a bias closer to zero, smaller root mean square error than the GEE with coverage probability of confidence interval near or above the nominal level. The simulation also showed that BR-GEE maintained a type I error rate near or below the nominal level.ConclusionsFor the analysis of longitudinal ordinal data involving a small number of subjects, the BR-GEE is advantageous for obtaining estimates of the regression parameters of marginal proportional odds models.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.