Abstract
This paper proposes a triple output converter with buck, boost and inverted outputs and controlled through duty cycle estimation. In the existing converter, to generate the negative output, the power flows from load to the supply (from the boost output to the supply) during a part of the cycle, which increases cycle time and losses, and reduces the power level. To overcome this, a modified converter with a main and an auxiliary inductance and with reduced number of switches is proposed. The converter can operate in continuous and discontinuous conduction modes and the outputs can be independently controlled. An analysis of the converter is done for both modes. A simplified control of the converter through duty cycle estimation is suggested to regulate the outputs, which does not have the constraint that the current ripple has to be small. The control works both in the continuous and discontinuous modes. The simulation results closely match with the analysis. A prototype of the converter is constructed with a Spartan FPGA system and results have been presented.
Highlights
Multi-output DC-DC converters have become very popular recently and they are used in many portable and handheld consumer applications
The hardware implementation is done for the converter in discontinuous mode using an FPGA controller, Spartan 3E XC3S250E system working at a clock frequency of 20 MHz
This paper proposed an alternate converter with a main and an auxiliary inductor, capable of generating both positive and negative outputs and in both buck and boost configurations
Summary
Multi-output DC-DC converters have become very popular recently and they are used in many portable and handheld consumer applications. When S2 is opened, S3 is closed and power is transferred to the buck output V3 through the inductor L This converter while providing all the three types of outputs has the problem that there is a reverse power flow from the load to the supply to generate the inverted output. This increases the ripple since the current has to pass through zero, twice in a cycle. The inductor L1 is charged through switch S0 during dTs and simultaneously L2 and the buck output is powered through switch S2 for duration of d1Ts. Once S0 is turned OFF, D1 turns ON to drive the inverted output (V2) for the rest of the cycle if V2 is operating in continuous conduction mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.