Abstract
Automotive millimeter-wave radars are widely used to measure kinematic parameters of surrounding objects in the environmental perception of automated vehicles and typically operate in frequency bands of around 24 GHz and 77 GHz. The 24 GHz and 77 GHz automotive millimeter-wave radars are similar in their speed and range measurement principles; however, they are distinct in their accuracies when measuring the above kinematic parameters because of the different carrier frequencies and bandwidths. In order to evaluate the kinematic parameter measurement performances of automotive millimeter-wave radars for environmental perception, this paper proposes a calibration method and establishes a bi-objective simulation facility for the speed and range calibration of 24 GHz and 77 GHz automotive millimeter-wave radars. The feasibility of the proposed calibration method and the accuracy of the established bi-objective simulation facility are verified by the results obtained via experiments conducted on two 24 GHz and 77 GHz millimeter-wave radar samples. According to the speed and range calibration results of the two millimeter-wave radar samples, the 77 GHz millimeter-wave radar sample possesses superior speed measurement accuracy compared with the 24 GHz sample. Additionally, the range measurement errors of the 77 GHz millimeter-wave radar sample are much smaller than those of the 24 GHz sample. This indicates that the 77 GHz millimeter-wave radar sample is more accurate and reliable than the 24 GHz sample. Finally, the 77 GHz millimeter-wave radar sample was tested for its speed and range resolving ability. The results confirm that the bi-objective simulation facility can satisfy the calibration requirements of speed resolution up to 0.01 m/s and range resolution up to 0.1 m. The proposed calibration method and the established simulation facility can easily satisfy the speed, range and resolution calibration requirements of 24 GHz and 77 GHz millimeter-wave radars with high precision and wide range, and can achieve more economical, comprehensive and traceable performance testing on both 24 GHz and 77 GHz automotive millimeter-wave radars for environmental perception.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.