Abstract

Multimodal multi-objective optimization problems (MMOPs) possess multiple Pareto optimal sets corresponding to the identical Pareto optimal front (PF). To handle MMOPs, we propose a bi-objective evolutionary algorithm (BOEA), which transforms an MMOP into a bi-objective optimization problem. This problem is constructed by the penalty boundary intersection technique and a diversity indicator to obtain multiple Pareto optimal sets. The first objective reflects the population convergence and factors in the population diversity in the objective space, while the other objective concentrates more on the population diversity in the decision space. Furthermore, an environmental selection strategy is designed to choose the offspring solutions, which consists of non-dominated sorting based on the transformed optimization problem and hierarchical clustering for selecting promising solutions. Experiments on 34 MMOPs demonstrate that BOEA performs better than selected state-of-the-art representatives, including 22 MMOPs from CEC2019 and 12 imbalanced MMOPs. In addition, the effectiveness of BOEA is further validated by six feature selection problemsin real-world applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.