Abstract
AbstractThe optimization of offshore wind farms is mainly performed through the deployment of wind farms and submarine cables to maximize power output and minimize cable costs. However, the above results are affected by the wake effect, equipment layout, and the cost of cables. To effectively complete the deployment of wind turbines and submarine cable lines, first, a bi‐level constrained optimization model based on maximum profit and the shortest route of cable is proposed in this paper; then, a differential evolution and improved Prim algorithm (IPADE) are used to optimize the upper‐ and lower‐level objective function, respectively. Moreover, the fitness values are used to divide the population, and a surrogate model is used to evaluate approximate fitness values for the sub‐population with poor performance; the best individual is selected as the offspring individual according to the approximate fitness values. Next, a clustering method is used to divide the position of the wind farm, and a Prim algorithm based on roulette wheel selection is designed to deploy submarine cables of every subwind farm. Finally, the proposed algorithm is compared with five other popular algorithms under the two wind conditions. The simulation experimental results show that algorithm IPADE performs better than other algorithms in terms of the power output, profit, and the length of cables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.