Abstract

This paper studies the cooperative driving of connected and automated vehicles (CAVs) at conflict areas (e.g., non-signalized intersections and ramping regions). Due to safety concerns, most existing studies prohibit lane change since this may cause lateral collisions when coordination is not appropriately performed. However, in many traffic scenarios (e.g., work zones), vehicles must change lanes. To solve this problem, we categorize the potential collision into two kinds and thus establish a bi-level planning problem. The right-of-way of vehicles for the critical conflict zone is considered in the upper-level, and the right-of-way of vehicles during lane changes is then resolved in the lower-level. The solutions of the upper-level problem are represented in tree space, and a near-optimal solution is searched for by combining Monte Carlo Tree Search (MCTS) with some heuristic rules within a very short planning time. The proposed strategy is suitable for not only the shortest delay objective but also other objectives (e.g., energy-saving). Numerical examples show that the proposed strategy leads to good traffic performance in real-time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.