Abstract
A globally and superlinearly convergent BFGS methods is introduced to solve general nonlinear equations without computing exact gradient. Compared with existing Gauss-Newton-based BFGS type methods, the proposed method does not require conditions such as sysmmetry on the underlying function. Moreover, it can be suitably adjusted to solve nonlinear least squares problems and still guarantee global convergence. Some numerical results are reported are reported to show its efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.