Abstract

Recent computer systems research has proposed using redundant requests to reduce latency. The idea is to replicate a request so that it joins the queue at multiple servers. The request is considered complete as soon as any one of its copies completes. Redundancy allows us to overcome server-side variability–the fact that a server might be temporarily slow due to factors such as background load, network interrupts, and garbage collection to reduce response time. In the past few years, queueing theorists have begun to study redundancy, first via approximations, and, more recently, via exact analysis. Unfortunately, for analytical tractability, most existing theoretical analysis has assumed an Independent Runtimes (IR) model, wherein the replicas of a job each experience independent runtimes (service times) at different servers. The IR model is unrealistic and has led to theoretical results that can be at odds with computer systems implementation results. This paper introduces a much more realistic model of redundancy. Our model decouples the inherent job size ( $X$ ) from the server-side slowdown ( $S$ ), where we track both $S$ and $X$ for each job. Analysis within the $S\&X$ model is, of course, much more difficult. Nevertheless, we design a dispatching policy, Redundant-to-Idle-Queue, which is both analytically tractable within the $S\&X$ model and has provably excellent performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.