Abstract

BackgroundDynamic and precise estimation of blood loss (EBL) is quite important for perioperative management. To date, the Triton System, based on feature extraction technology (FET), has been applied to estimate intra-operative haemoglobin (Hb) loss but is unable to directly assess the amount of blood loss. We aimed to develop a method for the dynamic and precise EBL and estimate Hb loss (EHL) based on artificial intelligence (AI).MethodsWe collected surgical patients’ non-recycled blood to generate blood-soaked sponges at a set gradient of volume. After image acquisition and preprocessing, FET and densely connected convolutional networks (DenseNet) were applied for EBL and EHL. The accuracy was evaluated using R2, the mean absolute error (MAE), the mean square error (MSE), and the Bland-Altman analysis.ResultsFor EBL, the R2, MAE and MSE for the method based on DenseNet were 0.966 (95% CI: 0.962–0.971), 0.186 (95% CI: 0.167–0.207) and 0.096 (95% CI: 0.084–0.109), respectively. For EHL, the R2, MAE and MSE for the method based on DenseNet were 0.941 (95% CI: 0.934–0.948), 0.325 (95% CI: 0.293–0.355) and 0.284 (95% CI: 0.251–0.317), respectively. The accuracies of EBL and EHL based on DenseNet were more satisfactory than that of FET. Bland-Altman analysis revealed a bias of 0.02 ml with narrow limits of agreement (LOA) (−0.47 to 0.52 mL) and of 0.05 g with narrow LOA (−0.87 to 0.97 g) between the methods based on DenseNet and actual blood loss and Hb loss.ConclusionsWe developed a simpler and more accurate AI-based method for EBL and EHL, which may be more fit for surgeries primarily using sponges and with a small to medium amount of blood loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call