Abstract
Cross-domain text sentiment analysis is a text sentiment classification task that uses the existing source domain annotation data to assist the target domain, which can not only reduce the workload of new domain data annotation, but also significantly improve the utilization of source domain annotation resources. In order to effectively achieve the performance of cross-domain text sentiment classification, this paper proposes a BERT-based aspect-level sentiment analysis algorithm for cross-domain text to achieve fine-grained sentiment analysis of cross-domain text. First, the algorithm uses the BERT structure to extract sentence-level and aspect-level representation vectors, extracts local features through an improved convolutional neural network, and combines aspect-level corpus and sentence-level corpus to form a sequence sentence pair. Then, the algorithm uses domain adversarial neural network to make the feature representation extracted from different domains as indistinguishable as possible, that is, the features extracted from the source domain and the target domain have more similarity. Finally, by training the sentiment classifier on the source domain dataset with sentiment labels, it is expected that the classifier can achieve a good sentiment classification effect in both source and target domain, and achieve sentence-level and aspect-level sentiment classification. At the same time, the error pooled values of the sentiment classifier and the domain adversary are passed backwards to realize the update and optimization of the model parameters, thereby training a model with cross-domain analysis capability. Experiments are carried out on the Amazon product review dataset, and accuracy and F1 value are used as evaluation indicators. Compared with other classical algorithms, the experimental results show that the proposed algorithm has better performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.