Abstract

Berry-Esseen bounds of the optimal O(n-1/2) order are obtained, under the null hypothesis of randomness, for serial linear rank statistics, of the form Σ a1 (Rt)a2(Rt-k). Such statistics play an essential role in distribution-free methods for time-series analysis, where they provide nonparametric analogues to classical (Gaussian) correlogram-based methods. Berry-Esseen inequalities are established under mild conditions on the score-generating functions, allowing for normal (van der Waerden) scores. They extend to the serial case the earlier result of Does (1982, Ann. Probab., 10, 982-991) on (nonserial) linear rank statistics, and to the context of nonparametric rank-based statistics the parametric results of Taniguchi (1991, Higher Order Asymptotics for Time Series Analysis, Springer, New York) on quadratic forms of Gaussian stationary processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.