Abstract
We obtain a gradient estimate for the Gauss maps from complete spacelike constant mean curvature hypersurfaces in Minkowski space into the hyperbolic space. As an application, we prove a Bernstein theorem which says that if the image of the Gauss map is bounded from one side, then the spacelike constant mean curvature hypersurface must be linear. This result extends the previous theorems obtained by B. Palmer [Pa] and Y.L. Xin [Xin1] where they assume that the image of the Gauss map is bounded. We also prove a Bernstein theorem for spacelike complete surfaces with parallel mean curvature vector in four-dimensional spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Calculus of Variations and Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.