Abstract
Abstract A new inverse method for finding the large-scale ocean circulation is described. Unlike most previous methods it uses no horizontal gradient information, and is designed for widely spaced data. The method assumes that density, (linear) potential vorticity and Bernoulli function are all approximately conserved on a streamline, so that the Bernoulli function depends solely on density and potential vorticity, both of which are known from data. The requirement that Bernoulli functions should match at points where density and potential vorticity match then leads to a heavily overdetermined problem for the surface pressure field, solved by a singular-value decomposition. The method is tested on an analytical solution due to Welander, and on the results of a numerical circulation model of Cox and Bryan, before use on climatological data, both over the main North Atlantic and over the beta triangle area. Analysis shows that for closely spaced data, the Bernoulli method reduces to beta-spiral dynamics, bu...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.