Abstract

The physically unclonable function (PUF) has been implemented with circuits that perform amplification of randomly given small process mismatch by using an explicit amplifier or by making a signal path repeatedly experience the same delay skew in an oscillator. Though the amplifier approach provides a fast response, it is vulnerable to noise at the first stage of amplification. On the other hand, the oscillator-based scheme requires a longer time to develop a digital output while achieving good noise immunity. This article proposes a PUF circuit exploiting a hybrid architecture, which combines a process skew amplification scheme in an oscillator collapse topology. The proposed scheme compensates for the drawbacks of the two approaches while achieving merits of them, i.e., high sensitivity to process variation and good immunity to noise. The supply rails of an even-stage ring oscillator (RO) are alternately fed from a diode-based threshold-sampling block. An IC with an array of 128 PUF cells is fabricated in 40-nm CMOS, showing a native bit error rate (BER) of 0.027%. Processing of 7-b temporal majority voting (TMV7) with a 3.64% masking demonstrates an error-free operation in a nominal condition. It shows a BER of 0.0019% in the worst condition under a voltage range of 0.7–1.4 V and a temperature range of −40 °C to 125 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.