Abstract

The unbalanced metabolism of sulfur dioxide can cause various diseases, such as neurological disorders and lung cancer. Until now, some researches revealed that the normal function of lysosomes would be disrupted by its abnormal viscosity. As a signal molecule, sulfur dioxide (SO2) plays an important role in lysosome metabolism. However, the connection of metabolism between the SO2 and viscosity in lysosomes is still unknown. Herein, we developed a benzothiazole-based near-infrared (NIR) fluorescent probe (Triph-SZ), which can monitor the SO2 derivatives and respond to the change of viscosity in lysosomes through two-photon imaging. Triph-SZ present high sensitivity and selectivity fluorescence response with the addition of SO2 derivatives based on the nucleophilic addition, and it also exhibits a sensitive fluorescence enhancement to environmental viscosity, which allows Triph-SZ to be employed to monitor the level of HSO3− and viscosity changes in lysosomes by the two-photon fluorescence lifetime imaging microscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.