Abstract

Dendritic cells (DCs) play a critical role in initiating immune responses; however, DCs also induce Th2-related allergic sensitivities. Thus, DCs become a target for therapeutic design in allergic diseases. In this study, we aim to investigate the anti-allergic effect of pure compounds from a medicinal mushroom Antrodia cinnamomea (Ac) on DC-induced allergic responses. We identified a benzenoid compound 4,7-dimethoxy-5-methyl-l,3-benzodioxole (DMB) which may modulate Th2 polarization in bone marrow-derived DCs (BMDCs) and in a murine food allergy model. DMB effectively reduced the Th2 adjuvant cholera toxin (CT)-induced BMDC maturation and cytokine production. In studying the mechanism, DMB blocked the molecular processes involved in Th2 induction, including cAMP activation, IL-33 production, and IRF4/Tim4 upregulation, in CT-activated BMDCs. Furthermore, DMB treatment attenuated the symptoms, clinical scores, and Th2 responses of CT-induced ovalbumin (OVA)-specific food allergy in mice at sensitization stage. These results indicated that DMB could suppress DC function for Th2 polarization and mitigate allergic responses. Thus, DMB may have potential to be a novel agent for preventing or treating food allergy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.