Abstract

An approach to analyzing and quantifying the shape characteristics of the endocardial contour of the left ventricle of the heart is described. The computation begins by finding the local curvature differences between the contour under consideration and the mean normal contour at each of 100 equidistant points. The weighted square of these differences, summed over a set of points, is shown to be the regional or, global bending energy required to deform the mean normal contour to the characteristic shape of the analyzed contour. Resampling, smoothing and curvature computation issues are considered for the image-derived digital contours that are used in the analysis. Experiments were performed on artificial contour data and data derived from contrast ventriculographic (CV) studies of humans. It is also shown that the method has been adapted to measure endocardial shape form equilibrium radionuclide angiocardiography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.