Abstract

Problems of large dimensions (linear, non-linear, integer, and continuous) are the major principles in the modeling of important natural and social phenomena. The larger are the extent and scope of the application of the phenomenon or the vastness of its applications; the larger is the dimension confronted in modeling. Integrated Petroleum Supply Chain (IPSC), which has been proposed by Nasab and Amin-Naseri (Energy 114:708–733, 2016), is one such problem. Specific solutions have been proposed over the years for problems of this kind. One of the most important methods in this regard is Benders’ decomposition method, proposed in 1962 by Benders for combinatorial optimization problems. In this paper, Benders’ decomposition method has been used to solve the IPSC model and the gap criteria are then used to evaluate the performance of this method. Here, for analyzing the performance of Benders’ decomposition method, the results of this method and those of Branch & Bound algorithm, which has been proposed by Nasab and Amin-Naseri (Energy 114:708–733, 2016), have been compared. Based on the results, while Branch & Bound algorithm method is not able to solve large size problems, the generated gap in Benders’ method is very small. This indicates the capability of Benders’ method to achieve a response close to the optimal response. Therefore, Benders’ method possesses appropriate efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.