Abstract
We present a new methodology to solve discretely-constrained mathematical programs with equilibrium constraints (DC-MPECs). Typically these problems include an upper planning-level optimization with some discrete decision variables (eg, build/don’t build) as well as a lower operations-level problem often described by an optimization or nonlinear complementarity problem. This lower-level problem may also include some discrete variables. MPECs are very challenging problems to solve and the inclusion of integrality constraints makes this class of problems even more computationally difficult. We develop a new variant of the Benders algorithm combined with a heuristic procedure that decomposes the domain of the upper-level discrete variables to solve the resulting DC-MPECs. We provide convergence theory as well as a number of numerical examples, some derived from energy applications, to validate the new method. It should be noted that the convergence theory applies if the heuristic procedure correctly identifies a decomposition of the domain so that the lower-level problem's optimal value function is convex. This is challenging but our numerical results are positive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.